Nonzero coefficients in restrictions and tensor products of supercharacters of Un(q)
نویسندگان
چکیده
The standard supercharacter theory of the finite unipotent upper-triangular matrices Un(q) gives rise to a beautiful combinatorics based on set partitions. As with the representation theory of the symmetric group, embeddings of Um(q) ⊆ Un(q) for m ≤ n lead to branching rules. Diaconis and Isaacs established that the restriction of a supercharacter of Un(q) is a nonnegative integer linear combination of supercharacters of Um(q) (in fact, it is polynomial in q). In a first step towards understanding the combinatorics of coefficients in the branching rules of the supercharacters of Un(q), this paper characterizes when a given coefficient is nonzero in the restriction of a supercharacter and the tensor product of two supercharacters. These conditions are given uniformly in terms of complete matchings in bipartite graphs. Résumé. La théorie standard des supercaractères des matrices triangulaires supérieures unipotentes finies Un(q) donne lieu à une merveilleuse combinatoire basée sur les partitions d’ensembles. Comme avec la théorie des représentations du groupe symétrique, Les plongements Um(q) ⊆ Un(q) pour m ≤ n mènent aux règles de branchement. Diaconis et Isaacs ont montré que la restriction d’un supercaractère de Un(q) est une combinaison linéaire des supercaractères de Um(q) avec des coefficients entiers non négatifs (en fait, elle est polynomiale en q). Dans une première étape vers la compréhension de la combinatoire des coefficients dans les règles de branchement des supercaractères de Un(q), ce texte caractérise les coefficients non nuls dans la restriction d’un supercaractère et dans le produit des tenseurs de deux supercaractères. Ces conditions sont données uniformément en termes des couplages complets dans des graphes bipartis.
منابع مشابه
Nonzero coefficients in restrictions and tensor products of supercharacters of U n ( q ) ( extended abstract )
The standard supercharacter theory of the finite unipotent upper-triangular matrices Un(q) gives rise to a beautiful combinatorics based on set partitions. As with the representation theory of the symmetric group, embeddings of Um(q) ⊆ Un(q) for m ≤ n lead to branching rules. Diaconis and Isaacs established that the restriction of a supercharacter of Un(q) is a nonnegative integer linear combin...
متن کاملRestrictions of Rainbow Supercharacters and Poset Binomials
A supercharacter theory of a finite group is a natural approximation to the ordinary character theory. There is a particularly nice supercharacter theory for Un, the group of unipotent upper triangular matrices over a finite field, that has a rich combinatorial structure based on set partitions. Various representation theoretic constructions such as restriction and induction have supercharacter...
متن کاملRainbow supercharacters and a poset analogue to q-binomial coefficients
This paper introduces a variation on the binomial coefficient that depends on a poset and interpolates between q-binomials and 1-binomials: a total order gives the usual q-binomial, and a poset with no relations gives the usual binomial coefficient. These coefficients arise naturally in the study of supercharacters of the finite groups of unipotent upper-triangular matrices, whose representatio...
متن کاملOn constant products of elements in skew polynomial rings
Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such tha...
متن کاملSuperclasses and supercharacters of normal pattern subgroups of the unipotent upper triangular matrix group
Let Un denote the group of n× n unipotent upper-triangular matrices over a fixed finite field Fq , and let UP denote the pattern subgroup of Un corresponding to the poset P . This work examines the superclasses and supercharacters, as defined by Diaconis and Isaacs, of the family of normal pattern subgroups of Un. After classifying all such subgroups, we describe an indexing set for their super...
متن کامل